Diagrams and harmonic maps, revisited

نویسندگان

چکیده

We extend many known results for harmonic maps from the 2-sphere into a Grassmannian to of finite uniton number an arbitrary Riemann surface. Our method relies on new theory nilpotent cycles arising diagrams F.E. Burstall and second author associated such maps; these properties arise criterion finiteness found recently by authors with A. Aleman. Applications include classification result minimal surfaces constant curvature constancy type maps.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harmonic Maps and Biharmonic Maps

This is a survey on harmonic maps and biharmonic maps into (1) Riemannian manifolds of non-positive curvature, (2) compact Lie groups or (3) compact symmetric spaces, based mainly on my recent works on these topics.

متن کامل

Tectonic discrimination diagrams revisited

[1] The decision boundaries of most tectonic discrimination diagrams are drawn by eye. Discriminant analysis is a statistically more rigorous way to determine the tectonic affinity of oceanic basalts based on their bulk-rock chemistry. This method was applied to a database of 756 oceanic basalts of known tectonic affinity (ocean island, mid-ocean ridge, or island arc). For each of these trainin...

متن کامل

Abstract Voronoi diagrams revisited

Voronoi Diagrams Revisited Rolf Klein∗ Elmar Langetepe∗ Zahra Nilforoushan† Abstract Abstract Voronoi diagrams [21] were designed as a unifying concept that should include as many concrete types of diagrams as possible. To ensure that abstract Voronoi diagrams, built from given sets of bisecting curves, are finite graphs, it was required that any two bisecting curves intersect only finitely oft...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annali di Matematica Pura ed Applicata

سال: 2022

ISSN: ['1618-1891', '0373-3114']

DOI: https://doi.org/10.1007/s10231-022-01271-1